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Direct numerical simulation (DNS) is used to explore similarities and differences
between fully developed supersonic turbulent plane channel and axisymmetric non-
swirling pipe flow bounded by isothermal walls. The comparison is based on equal
friction Mach number, friction Reynolds number, Prandtl number, ratio of specific
heats and viscosity exponent. The channel half-width and pipe radius are chosen
to define the Reynolds numbers. To what extent and why mean flow quantities,
second-order turbulence statistics and terms in the Reynolds stress equations coincide
or diverge in both flows are investigated. The role of the fluctuating pressure in
causing characteristic differences among correlations involving pressure fluctuations
is identified via a Green-function-based analysis of the pressure field.

1. Introduction
Compressible wall-bounded turbulent flows are an important element of high-

speed flight. They appear both in external flows over aerospace vehicles and in engine
inlets and combustors. Although compressible wall-bounded turbulence has attracted
researchers since the fifties of the last century, the underlying phenomena are not
understood in all respects, even today. Early experimental evidence on compressible
wall-bounded shear flows has been discussed by Bradshaw (1977), Fernholz & Finley
(1976) and Kline, Cantwell & Lilley (1982). Lele (1994), Chassaing et al. (2002),
Smits & Dussauge (2006) and Gatski & Bonnet (2009) have provided competent
reviews on later experimental and numerical work.

It was the direct numerical simulations (DNS) of supersonic turbulent channel flow
by Coleman, Kim & Moser (1995) and the companion work of Huang, Coleman &
Bradshaw (1995) on data analysis and modelling issues which contributed to a better
understanding of ‘compressibility’ effects in the form of mean property variations
in shear flows bounded by isothermal walls. Nearly a decade later Foysi, Sarkar &
Friedrich (2004) gave an explanation for the reduction of pressure–strain correlations
in supersonic compared to incompressible isothermal channel flow by relating it to
the sharp wall-normal density variations in the framework of a Green-function-based
analysis of the pressure field. It was then natural to ask whether analogous effects
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also hold in compressible flows through pipes and what the similarities or differences
are between the channel and pipe flow.

Comparisons between incompressible turbulent channel and pipe flow have been
performed earlier. However, they were focused on mean velocity profiles, friction
laws and a few higher order statistics only. Schlichting (1968) drew attention to the
similarity between velocity profiles of incompressible turbulent channel and pipe flow,
but was aware of the fact that this similarity is not perfect. Nieuwstadt & Bradshaw
(1997) used DNS data to show that the similarity fails beyond the second-order
moments and offered an explanation based on a simple model. Wosnik, Castillo &
George (2000) presented a theory of the mean velocity and skin friction for fully
developed turbulent channel and pipe flow including Reynolds number effects. Nickels
(2004) developed a functional form for the velocity profile of turbulent wall-bounded
shear flow subjected to a strong pressure gradient which is based on the concept of a
universal critical Reynolds number for the sublayer.

It is our objective to identify similarities and differences between fully developed
compressible channel and pipe flow up to second-order turbulence statistics and to
provide explanations for the corresponding behaviour based on an analysis of the
Reynolds stress balances and the pressure field. The results may also motivate work
on differences and similarities of other turbulent flows, e.g. plane and axisymmetric
free shear flows.

The paper is organized as follows. The governing equations for DNS of compressible
turbulent flow of a thermally perfect gas in cylindrical coordinates are presented in
§ 2, together with the values for the flow parameters characterizing fully developed
pipe and channel flow. The high-order numerical schemes, computational domain
sizes and grid resolutions used are discussed as well. Section 3 is devoted to the
comparison of mean momentum and energy balances in pipe and channel flow, to
the resulting consequences for profiles of mean flow variables and to the exposure
of similarities and differences in second-order moments. In § 4, deeper insight into
subtle differences between the pipe and channel flow is gained from an analysis of
the four Reynolds stress budgets. An attempt is made in § 5 to explain differences in
the pressure–strain correlations, based on a Green’s function analysis of the pressure
fluctuations. Finally, conclusions are drawn in § 6.

2. Details of direct simulations
The governing equations for compressible flow of a thermally and calorically perfect

gas read in cylindrical (x, r, φ) coordinates (Bird, Stewart & Lightfoot 1960):
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p = ρRT . (2.6)

They express the conservation of mass density ρ, axial, radial and azimuthal
momentum density ρux, ρur, ρuφ and total energy density E = ρ(CvT + 0.5�u.�u), and
include the thermally perfect gas equation (2.6), where p is pressure, R the gas
constant and T the absolute temperature. The corresponding equations in Cartesian
coordinates are well known and need not be repeated here. Equation (2.2) contains a
homogeneous body force per unit volume fx , which drives the flow in axial direction.
It implies an extra term in the total energy equation (2.5), uxfx , namely the work
done by the body force. Note that the divergence term due to work done by viscous
forces is split into two terms, one of them being the kinetic energy dissipation rate
Φ . The viscous stresses follow Newton’s law and read in cylindrical coordinates:
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The heat fluxes in (x, r, φ) directions satisfy Fourier’s law:
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The dissipation rate Φ has the following form:
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In the viscous stresses, a bulk viscosity is not taken into account, since it has a
negligible effect in the flow regimes under consideration. The dynamic viscosity is
proportional to the nth power of the temperature, μ ∝ T n, with n= 0.7. Specific heats
are assumed to be constant at a ratio of γ =Cp/Cv = 1.4 for air. The Prandtl number
Pr = Cpμ/k = 0.71 is kept constant as well. The remaining flow parameters needed
to uniquely characterize compressible flow are the Mach and Reynolds numbers.
Parameters that are most pertinent to fully developed turbulent channel and pipe
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Flow Reτ Mτ Rem Mm

Pipe 245 0.077 3181 1.30
Channel 246 0.078 2986 1.26

Table 1. Flow parameters of pipe and channel DNS.

flow are the friction Reynolds and Mach numbers, viz

Reτ = ρ̄wuτ l/μw = l+, Mτ = uτ/
√

γRTw (2.12)

with the length scale l = h, R representing the channel half-width h and the pipe radius
R. The mean values of the dynamic viscosity and the speed of sound are computed
at constant wall temperature Tw . The mean density at the wall ρ̄w and the wall shear
stress τ̄w are a result of the computation. The friction velocity reads, uτ =

√
|τ̄w|/ρ̄w .

We follow common practice and apply a tilde and an overbar to define Favre and
Reynolds averages, respectively, and double and single dashes to specify Favre and
Reynolds fluctuations, respectively, e.g. u′′, ρ ′.

The uniform body force fx in (2.2) and (2.5) is chosen such that it generates
statistically steady fully developed turbulent pipe and channel flow. This is the case
when it equals the mean pressure gradient, which is constant normal to the walls.
Given homogeneous wall boundary conditions and a computational domain with an
axial extent comparable to the largest turbulent scales, the advantage of this approach
is that it allows the use of periodic boundary conditions in the simulation for all
flow variables in streamwise x direction. In the simulation, p then fluctuates around
a mean value along x. Non-dimensionalized with inner variables, the mean pressure
gradient is proportional to the inverse of the Reynolds number. For pipe and channel
flow, we have
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The result for pipe flow will be derived below.
The values of the friction Reynolds and Mach numbers used in our DNS are listed

in table 1, along with the corresponding bulk Reynolds and Mach numbers which
are defined as

Rem = ρ̄mūml/μw, Mm = ūm/
√

γRTw. (2.15)

Here ρ̄m, ūm are the cross-sectionally averaged mean density and velocity.
We solve the governing equations in a pressure-entropy-velocity form (Sesterhenn

2001) in Cartesian and cylindrical coordinates (see Ghosh, Sesterhenn & Friedrich
2008 for details). High-order numerical schemes are used to integrate these equations.
The fifth-order compact low-dissipation upwind scheme of Adams & Shariff (1996)
and the compact sixth-order scheme of Lele (1992) are chosen to discretize convection
and molecular transport terms, respectively. A third-order ‘low-storage’ Runge–
Kutta scheme of Williamson (1980) advances the solution in time. The geometric
singularity due to 1/r terms in the equations is treated by placing no grid point
on the cylinder axis (Mohseni & Colonius 2000). The finite-difference schemes
have been previously validated for compressible turbulent channel flow by Lechner,
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Figure 1. Two point correlation of velocity fluctuations in the streamwise direction at
y+ = 10 (a) and 200 (b); pipe (solid line), channel (dashed line).

Sesterhenn & Friedrich (2001) whose results for an M = 1.5 case agree very well
with those of Coleman et al. (1995). Equidistant grids are chosen in streamwise
and circumferential (spanwise) directions and grid-clustering is adopted in the
wall-normal direction. The computational domains to simulate pipe/channel flow
have sizes of 10R × 2πR × R and 4πh × 4πh/3 × 2h, respectively. In view of recent
numerical and experimental investigations dealing with the question whether large
outer-scale motions in channel, pipe and boundary layer flows exist and remain
passive at all Reynolds numbers or affect the near-wall dynamics, it may be asked
whether the chosen computational domains in the streamwise direction are large
enough to capture the large-scale structures that exist at Reτ = 245 and low friction
Mach number. From experiments of Morrison et al. (2004) in incompressible pipe
flow at Reynolds numbers in the range 1500 � Reτ � 100 000, we know that large-
scale motions may have maximum wavelengths of approximately 10R. Similar
results were reported by Guala, Hommema & Adrian (2006) for pipe flow in
the range 3815 � Reτ � 7959. Measurements of streamwise velocity fluctuations in
incompressible turbulent boundary layers at Reτ = 7300 (based on boundary layer
thickness δ) by Hutchins & Marusic (2007) reveal inner large-scale structures of 1000
wall units (ν/uτ ) in size and outer large scales of 6δ. These scales were deduced
from the two peaks in the pre-multiplied streamwise energy spectra. At low Reynolds
numbers of the order of 180 these two peaks merge and there is no chance of
distinguishing the inner from outer scales. An analogous effect has been found by
Abe, Kawamura & Choi (2004) in their DNS of incompressible fully developed
channel flow at Reτ ranging from 180 to 640. Their pre-multiplied spanwise energy
spectra show a single peak at Reτ = 180, but two peaks at Reτ = 640. They used
computational domains of exactly the same size as in the present DNS of channel
flow and compared their data with data obtained in smaller domains with the result
that only negligibly small differences are found in the mean flow variables and the
second-order turbulence statistics. These findings seem to confirm that our simulations
properly capture the existing large-scale structures. Finally, the streamwise two-point
correlations (figure 1) computed at positions y+ =10 and 200 decay rapidly within
half the channel length and hence validate the domain sizes.

The cylindrical grid for supersonic pipe flow comprises 256 × 91 × 128 points
in (x, r, φ) directions while the Cartesian grid for supersonic channel flow has
192 × 151 × 128 points in (x, y, z) directions. This translates into mesh sizes in terms
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Figure 2. One-dimensional streamwise energy spectra (E+
uiui

) at y+ = 10 (a) and 200 (b);
pipe (solid line), channel (dashed line).

of inner variables of 9.5 (16.1) in streamwise, of 12 (8.05) in circumferential (spanwise)
directions and of 0.93 (0.87) nearest to the wall, respectively. The maximum wall-
normal mesh sizes which occur near the centreline are �y+ = 4.26 (pipe) and 5.6
(channel). The reader may wonder about the difference in streamwise resolution for
channel (�x+ = 16.1) and pipe flow (�x+ =9.5). The fact is that the grid spacing
for the channel is sufficiently small, while that for the pipe is unnecessarily small.
The pipe data was used to prescribe inflow conditions for a spatially developing
supersonic nozzle flow where higher resolution in the streamwise direction than for
fully developed pipe flow was needed (Ghosh et al. 2008). The one-dimensional
streamwise spectra of the velocity components, shown in figure 2, verify that the
flowfields of channel and pipe are properly resolved.

3. Mean flow variables and second-order turbulence statistics
The streamwise pressure gradient has an effect on the whole flow, the importance

of which – concerning the turbulence structure – decreases as the Reynolds number
increases. To show this, we average the streamwise and radial momentum equations
(2.2) and (2.3). For fully developed pipe flow without mean swirling motion (ũφ = 0),
we get
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The mean viscous stresses are approximated by neglecting correlations with viscosity
fluctuations which are small at subsonic and supersonic speeds, as shown by Huang
et al. (1995). Note also that the Favre averaged radial velocity is exactly zero in
(3.2), while the Reynolds averaged component which appears in the radial and
circumferential viscous stress is not. It can, however, be assumed small and therefore
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τ̄rr
∼=0, τ̄φφ

∼= 0. Differentiating (3.2) in axial direction shows that the second derivative
∂2p/∂r∂x vanishes which means that the mean axial pressure gradient is constant
in radial direction. Using the following wall-boundary and symmetry conditions
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A similar equation holds for channel flow in an (x, y, z) coordinate system the
origin of which lies on the wall (y = 0). If we replace the radial coordinate by a
coordinate y, which is zero at the wall and is defined by y = R − r , and substitute
ux = u, ur = − v, uφ =w, we obtain the following linear relations for the total stresses
in both flows:
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It is now obvious that the effect of the dimensionless pressure gradient (2.13) and
(2.14) on the Reynolds shear stress and the turbulence production decreases as the
Reynolds number increases. In the limit of high Reynolds number, Reτ = l+ � 1, (3.4)
and (3.5) take a form which is known from zero-pressure-gradient boundary layers.

Using a Taylor series expansion for the Reynolds shear stress in (3.4) and (3.5),
the following relation for the dimensionless mean velocity in the viscous sublayers of
channel and pipe can be deduced:
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(3.6)

For incompressible isothermal flow with μw/μ̄ = 1, relation (3.6) reduces to a form
similar to the asymptotic relation (2.5) given by Nickels (2004) for boundary layer
flow, with a linear term, a quadratic (pressure-gradient) term and a fourth-order term
in y+. Since the last term is small at subsonic and supersonic speeds, the investigated
near-wall channel and pipe flows should, at first sight, behave similarly, for equal
friction Reynolds and Mach numbers. A comparison of viscous and Reynolds shear
stresses and total stresses for the flow parameters given in table 1 is presented in
figure 3. In this and the following figures dotted/solid lines represent channel/pipe
flow, respectively. All curves seem to lie on top of each other. Figure 4 shows profiles
of the mean velocity ū+(y+) for channel and pipe flow. Terms A and A+B of (3.6) are
also plotted for comparison, using channel data. Again, all curves seem to collapse at
least in the viscous sublayer. A closer look, however, reveals subtle differences even
close to the wall which result from differences in the mean viscosities of channel and
pipe flow, as explained below. In the fully turbulent region the channel has a flatter
velocity profile than the pipe which points towards distinct differences in the integral
parameters. It is interesting to quantify the absolute error to which the DNS statistics
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satisfy the integrated momentum equations (3.4) and (3.5). Figure 5 demonstrates that
the maximum absolute errors in the channel and the pipe do not exceed values of
0.004.

Using the van Driest transformation,

ū+
V D =

ū+∫
0

√
ρ̄

ρ̄w

dū+, (3.7)

the mean velocity profiles tend towards log-laws with marginally different gradients
and constants in both flows (see figure 6).

We now integrate the radial mean momentum equation (3.2) and use the coordinate
and velocity transformations that led to (3.5) to obtain an expression for the
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wall-normal pressure variation in the pipe. An analogous expression holds for channel
flow, viz

p̄ = p̄w − ρv′′v′′,
(
channel) (3.8)

p̄ = p̄w − ρv′′v′′ −
∫ y/R

0

(ρv′′v′′ − ρw′′w′′
) d(y/R)

1 − y/R
. (pipe) (3.9)

The equations reveal an important qualitative difference between pipe and channel
flow resulting from the transverse curvature term. Plots of these profiles in figure 7,
show indeed characteristic differences which seem small in this specific normalization.
They amount to less than 1 % of the wall pressure, but have a more sensible effect
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on the transverse Reynolds stresses, measured in terms of the wall shear stress,
as will be seen later. A key to the understanding of fully developed compressible
turbulent channel and pipe flow lies in the rapid wall-normal changes in mean fluid
properties, ρ̄ and T̄ , caused by viscous heating. In figure 8 we compare mean density
and temperature profiles, normalized with wall values, rather than viscosity profiles.
The mean viscosity behaves like the mean temperature (μ ∝ T n), rises steeply in the
wall layer and has a plateau in the core (Foysi et al. 2004). Obviously, density and
temperature differ in both flows at any distance from the wall and the question is
why this is so. In order to clarify this, we study the mean internal energy equations,
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integrated from the wall to a position y:

(
λ̄
∂T̄

∂y︸︷︷︸
MHF

− Cvρv′′T ′′︸ ︷︷ ︸
THF

)
+ q̄w︸︷︷︸

WHF

= −
y∫

0

(
μ̄

(
∂ū
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(3.10)

(
1 − y

R

)(
λ̄
∂T̄

∂y
− Cvρv′′T ′′

)
+ q̄w = −

y∫
0

(
1 − y

R

) (
μ̄

(
∂ū

∂y

)2

+ ε

− p̄(
1 − y

R

) ∂
(
1 − y

R

)
v̄

∂y
− p′d ′

)
dy. (pipe) (3.11)

The labels of various terms in (3.10) have the following meaning: MHF, mean
molecular heat flux; THF, turbulent heat flux; WHF, wall heat flux; DD, direct
dissipation; TD, turbulent dissipation; MPD, mean pressure–dilatation; PDC,
pressure–dilatation correlation.

In these equations we have, in analogy to the viscous stress in (3.1), approximated
the mean molecular heat fluxes, neglecting correlations with fluctuations of the thermal
conductivity.

From the mean total energy equations, for channel and pipe flow, integrated from
the wall to the centreline, we equate the heat transfer into the walls equal to the total
pressure work done:

q̄w = hūm

∂p̄

∂x
= −ūm|τ̄w|, ūm =

1

h

h∫
0

ūdy, (channel) (3.12)

q̄w =
R

2
ūm

∂p̄

∂x
= −ūm|τ̄w|, ūm =

2

R2

R∫
0

rūdr. (pipe) (3.13)

Normalizing (3.11) with the reference quantities uτ , ρ̄w, Tw, τ̄w, μw, λw for mean values
of velocity, density, temperature, pressure, viscosity and thermal conductivity at the
wall, we obtain

(
1 − y+

R+

) (
γ

P r

λ̄

λw

∂T̄ /Tw

∂y+
− ρv′′T ′′

ρ̄wuτTw

)
+ γBq = −γ (γ − 1)M2

t

y∫
0

(
1 − y+

R+

)

(
μ̄

μw

(
∂ū+

∂y+

)2

+ ε+ − p̄+

(
1 − y+

R+

)
∂
(
1 − y+

R+

)
v̄+

∂y+
− p′d ′+

)
dy+. (3.14)

This equation which has to be integrated a second time to obtain the mean temperature
distribution in the pipe, T̄ /Tw , contains on its left-hand side the mean molecular heat
flux, the turbulent heat flux and the heat flux into the wall, in terms of the non-
dimensional heat flux, Bq = q̄w/(ρ̄wCpuτTw) (Bradshaw 1977). The right-hand side
comprises the integrated effects of direct and turbulent kinetic energy dissipation
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Figure 9. Profiles of mean molecular and turbulent heat fluxes and of the integrated effects
of direct and turbulent dissipation rates, normalized with the wall heat flux, for channel and
pipe flow, according to (3.14). Dotted/solid lines represent channel/pipe flow.

(ε+ = εμw/τ̄ 2
w) and mean pressure-dilatation as well as pressure-dilatation correlation

((p′d ′)+ = p′d ′μw/τ̄ 2
w). The latter effects are known to be negligibly small up to

supersonic speeds (Coleman et al. 1995; Huang et al. 1995). An equation, similar
to (3.14) can be derived for channel flow, just by setting the brackets, (1 − y+/R+),
in (3.14) equal to 1. Figure 9 contains profiles of the relevant terms in (3.14) for
both flows, normalized with the wall heat fluxes. At a certain position y/h = 0.15
in the channel, the mean molecular and turbulent heat fluxes surpass those in the
pipe at y/R. In contrast to this is the integrated direct dissipation rate everywhere
in the channel lower than in the pipe, as a result of lower mean velocity gradients.
The integrated turbulent dissipation rate is lower in the wall-layer of the channel,
but overshoots that of the pipe in the core region (y/l > 0.4). The reason why the
molecular heat flux in the pipe is lower than that in the channel is partly also due to
transverse curvature. This effect is demonstrated in figure 10, where, besides the two
terms for the molecular fluxes in channel and pipe, the term for pipe flow has been
plotted in a modified form by setting the factor (1 − y/R) equal to 1 (dashed-dotted
curve). Since this curve approaches that for channel flow, it is shown that transverse
curvature has an impact on the mean molecular heat flux, and of course on the
remaining terms as well.

Now that the reasons for the differences in mean temperature, density and pressure
(p̄/p̄w

∼= ρ̄T̄ /(ρ̄wTw), non-dimensional correlations, ρ ′T ′/(ρ̄wTw), are small) between
channel and pipe flow are clarified, we present profiles of the three normal Reynolds
stresses in figures 11–13, versus the semilocal coordinate, y∗ = y+μw/μ̄

√
ρ̄/ρ̄w of

Huang et al. (1995). These stresses are normalized with |τ̄w| like the shear stresses in
(3.4) and (3.5).

It is interesting to note that in the wall layer of the pipe each of the normal Reynolds
stresses collapses onto the corresponding curve for the channel. While the peak values
of the streamwise and spanwise (circumferential) stresses still pretty much coincide,
those of the wall-normal Reynolds stress do not. Furthermore, we observe differences
between channel and pipe flow in their fully turbulent regions, especially for the



Compressible turbulent channel and pipe flow 167

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1.0

 0.05  0.10  0.15  0.20

 0.1

 0.2

 0.3

 0.06  0.07  0.08  0.09

y/l

Figure 10. Near-wall profiles of the mean molecular heat fluxes for channel (dashed line) and
pipe flow (solid line), according to (3.14). The dash-dotted curve represents the mean molecular
heat flux in the pipe with the factor (1 − y/R) set to 1. A zoom of a region of the curves is
shown in inset.
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Figure 11. Streamwise Reynolds stress versus y∗. Dotted/solid lines
represent channel/pipe flow.

wall-normal and spanwise (circumferential) stresses. An explanation for this behaviour
has to start from the Reynolds stress transport equations. Anticipating differences
in the pressure–strain correlations, we present profiles of the root mean square
(RMS) pressure fluctuations in figure 14, normalized with the wall shear stress. The
pressure fluctuations in the channel lie consistently below those for the pipe. Even the
wall value is roughly 10 % lower. For comparison we have included RMS pressure
fluctuations for incompressible pipe flow at a friction Reynolds number of R+ = 180,
obtained in the DNS of Wu and Moin (2008). Although our Reynolds number is
higher (R+ = 245), the peak pressure fluctuation in the supersonic pipe is lower, due
to the decrease in mean density, a Mach number effect that has been explained for
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Figure 12. Wall-normal Reynolds stress versus y∗. Dotted/solid lines
represent channel/pipe flow.
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Figure 13. Spanwise (circumferential) Reynolds stress versus y∗. Dotted/solid lines represent
channel/pipe flow.

channel flow by Foysi et al. (2004). The wall value, on the other hand is slightly higher
than its incompressible counterpart, due to the higher Reynolds number. The three
components of the RMS vorticity fluctuations are defined as follows for Cartesian
and cylindrical coordinates, using the transformation y = R − r , u′

x = u′, v′ = − u′
r ,

u′
φ = w′:

ω′
x =

∂w′

∂y
− ∂v′

∂z
, ω′

y =
∂u′

∂z
− ∂w′

∂x
, ω′

z =
∂v′

∂x
− ∂u′

∂y
, (channel) (3.15)
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Figure 14. RMS pressure fluctuations normalized with the wall shear stress. Solid and dotted
lines represent compressible pipe and channel flow, respectively. The dashed-dotted line is for
incompressible pipe flow (Wu & Moin 2008, with kind permission of the authors).
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Figure 15. RMS vorticity fluctuations, normalized with the friction velocity squared and the
wall viscosity. Dotted/solid lines represent channel/pipe flow.

ω′
x =

1

R − y

∂v′

∂φ
− 1

(1 − y/R)

∂(1 − y/R)w′

∂y
, ω′

y =
1

R − y

∂u′

∂φ
− ∂w′

∂x
,

ω′
φ =

∂u′

∂y
− ∂w′

∂x
. (pipe) (3.16)

They are plotted in figure 15, normalized with the friction velocity squared and the
viscosity at wall temperature. Here, again, does the fully turbulent flow in the channel
core produce weaker vorticity fluctuations than that of the pipe. The opposite is true
for the spanwise component close to the wall.
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4. Reynolds stress transport equation
For fully developed pipe flow the transport equations for the normal stresses ρu′′u′′,

ρv′′v′′, ρw′′w′′ and the shear stress ρu′′v′′ read, respectively:

0 = −2ρu′′v′′ ∂ũ

∂y︸ ︷︷ ︸
Pxx

− 1

(1 − y/R)

∂(1 − y/R)ρu′′u′′v′′

∂y︸ ︷︷ ︸
T Txx

+
2

1 − y/R

∂(1 − y/R)τ ′
xyu

′′

∂y︸ ︷︷ ︸
V Dxx

+2p
′ ∂u

′′

∂x︸ ︷︷ ︸
PSxx

−2τ ′
xx

∂u′′

∂x
− 2τ ′

xy

∂u′′

∂y
− 2

R − y
τ ′
xφ

∂u′′

∂φ︸ ︷︷ ︸
DSxx

+2u′′
(

1

(1 − y/R)

∂(1 − y/R)τ̄xy

∂y
− ∂p̄

∂x

)
︸ ︷︷ ︸

Mxx

,

(4.1)

0 = − 1

(1 − y/R)

∂(1 − y/R)ρv′′v′′v′′

∂y
− 2

R − y
ρv′′w′′w′′

︸ ︷︷ ︸
T Tyy

− 2

(1 − y/R)

∂(1 − y/R)p′v′′

∂y
+

2

(1 − y/R)

∂(1 − y/R)τ ′
yyv

′′

∂y︸ ︷︷ ︸
PDyy/V Dyy

+
2

(1 − y/R)
p

′ ∂(1 − y/R)v′′

∂y︸ ︷︷ ︸
PSyy

−2τ ′
yx

∂v′

∂x
− 2τ ′

yy

∂v′

∂y
− 2

R − y
τ ′
yφ

∂v′′

∂φ
+ 2

v′′τ ′
φφ

R − y︸ ︷︷ ︸
DSyy

+2v′′
(

1

(1 − y/R)

∂(1 − y/R)τ̄yy

∂y
+

τ̄φφ

R − y
− ∂p̄

∂y

)
︸ ︷︷ ︸

Myy

, (4.2)

0 =

− 1

(1 − y/R)

∂(1 − y/R)ρv′′w′′w′′

∂y
+

2

(R − y)
ρv′′w′′w′′

︸ ︷︷ ︸
T Tφφ

+
2

(1 − y/R)

∂(1 − y/R)τ ′
yφw

′′

∂y︸ ︷︷ ︸
V Dφφ

+
2

(R − y)
p′ ∂w′′

∂φ︸ ︷︷ ︸
PSφφ

−2τ ′
xφ

∂w′′

∂x
− 2τ ′

yφ

∂w′′

∂y
− 2

(R − y)
τ ′
φφ

∂w′′

∂φ
− 2

w′′τ ′
yφ

R − y︸ ︷︷ ︸
DSφφ

+2w′′
(

1

(1 − y/R)

∂(1 − y/R)τ̄yφ

∂y
− 1

R − y
τ̄yφ

)
︸ ︷︷ ︸

Mφφ

, (4.3)
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0 = ρv′′v′′ ∂ũ

∂y︸ ︷︷ ︸
Pxy

+
1

(1 − y/R)

∂(1 − y/R)ρv′′u′′v′′

∂y
+

1

R − y
ρu′′w′′w′′

︸ ︷︷ ︸
T Txy

+
1

(1 − y/R)

∂(1 − y/R)p′u′′

∂y︸ ︷︷ ︸
PDxy

−p′
(

∂v′′

∂x
+

1

(1 − y/R)

∂(1 − y/R)u′′

∂y

)
︸ ︷︷ ︸

PSxy

− 1

(1 − y/R)

∂(1 − y/R)(τ ′
xyv

′′ + τ ′
yyu

′′)

∂y︸ ︷︷ ︸
V Dxy

+τ ′
xx

∂v′′

∂x
+ τ ′

xy

(
∂v′′

∂y
+

∂u′′

∂x

)
+ τ ′

yy

∂u′′

∂y
+

1

R − y

(
τ ′
xφ

∂v′′

∂φ
+ τ ′

yφ

∂u′′

∂φ

)
−

u′′τ ′
φφ

R − y︸ ︷︷ ︸
DSxy

+v′′
(

∂p̄

∂x
− 1

(1 − y/R)

∂(1 − y/R)τ̄xy

∂y

)
+ u′′

(
∂p̄

∂y
− 1

(1 − y/R)

∂(1 − y/R)τ̄yy

∂y

)
︸ ︷︷ ︸

Mxy

.

(4.4)

The labels of the various terms in (4.1)–(4.4) have the following meaning: P:
production, TT: turbulent transport, PD/VD: pressure and viscous diffusion, PS:
pressure–strain rate redistribution, DS: viscous (or turbulent) dissipation, M: mass
flux variation (viscous and pressure work).

The second term in T Tyy, T Tφφ and T Txy is sometimes labelled CR for ‘cylindrical
coordinate redistribution’. We do not follow this notation and prefer underlining its
origin, the convection term. The corresponding Reynolds stress transport equations
for channel flow may be obtained from (4.1)–(4.4) by replacing ∂/r∂φ by ∂/∂z and
letting R → ∞. When we normalize all terms in the transport equations using τ̄ 2

w/μ̄, as
suggested by Foysi et al. (2004), we see only a subtle difference in figure 16 between
the production terms of channel and pipe flow, at least up to the zone of maximum
production. This minor difference might result from gradients of the mean Favre
fluctuation which appears in the normalized production term:

−2
ρu′′v′′

|τ̄w|
μ̄

μw

∂ũ+

∂y+
= −2

ρu′′v′′

|τ̄w|
μ̄

μw

∂ū+

∂y+
+ 2

ρu′′v′′

|τ̄w|
μ̄

μw

∂u′′+

∂y+
. (4.5)

While the first term on the right-hand side of (4.5) is identical in both flows (cf.
figure 3), minor differences can only result from the gradient of the mean Favre
fluctuation and the viscosity ratio. However, since u′′ is only of the order of 1 % of
the bulk velocity ūm the second term on the right-hand side of (4.5) is small compared
to the first. In the fully turbulent flow region (y∗ > 30) the source terms Pxx , DSxx ,
PSxx and even the turbulent transport term T Txx (figure 17) show differences between
channel and pipe flow, in the sense that the amplitudes of these terms are consistently
smaller in the channel. This is, as we have seen, consistent with the observation that
the wall-normal and spanwise velocity fluctuations in the channel are lower than in
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Figure 16. Terms of the streamwise Reynolds stress budget versus y∗. Production (Pxx),
dissipation (DSxx) and viscous diffusion (V Dxx). Dotted/solid lines represent channel/pipe
flow.
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Figure 17. Terms of the streamwise Reynolds stress budget versus y∗. Pressure–strain
correlation (PSxx), turbulent transport (T Txx), mass flux variation (Mxx). Dotted/solid lines
represent channel/pipe flow.

the pipe (see figures 12 and 13 ). Of special importance, in this context, is the fact that
the pressure–strain correlation in the channel is reduced compared to that in the pipe.
As a consequence the wall-normal and spanwise Reynolds stresses will receive less
energy than the corresponding stresses in the pipe. This is indeed the case as seen in
figures 18 and 19. For completeness, we present the Reynolds shear stress budget in
figure 20 and note consistently smaller amplitudes in the source terms for channel flow.

We would like to touch on a further interesting point observed close to the wall and
especially pronounced in the streamwise Reynolds stress balance, figure 16, namely
the fact that the viscous diffusion and dissipation terms in the channel have higher
amplitudes than those in the pipe. To confirm that this is a physical effect, we write
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Figure 18. Terms of the wall-normal Reynolds stress budget versus y∗. Not all terms are
plotted for better visibility. Dotted/solid lines represent channel/pipe flow.
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Figure 19. Terms of the spanwise (circumferential) Reynolds stress budget versus y∗. Not all
terms are plotted for better visibility. Dotted/solid lines represent channel/pipe flow.

down the viscous diffusion term and split it into two terms as follows:

V Dxx = 2

(
∂τ ′

xyu
′′

∂y
−

τ ′
xyu

′′

R − y

)
. (4.6)

The contribution of the term 2(τ ′
xyu

′′/R − y) which appears only in the pipe flow is
small particularly near the wall. So, we focus on the term 2(∂τ ′

xyu
′′/∂y).

The correlation function can be written as τ ′
xyu

′′ = τ ′
xyu

′. Since we have neglected
viscosity fluctuations in the definition of the mean viscous shear stress (see (3.1)), we
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Figure 20. Terms of the Reynolds shear stress budget versus y∗. Not all terms are plotted
for better visibility. Dotted/solid lines represent channel/pipe flow.

do the same in defining the fluctuating shear stress as

τ ′
xy

∼= μ̄

(
∂v′

∂x
+

∂u′

∂y

)
. (4.7)

Using (4.7), the correlation function takes the form

τ ′
xyu

′ ∼= μ̄

(
∂u′2/2

∂y
− v′ ∂u′

∂x

)
. (4.8)

The term μ̄v′∂u′/∂x is negligible.
The viscous diffusion term now reads:

V Dxx =

(
∂u′2

∂y

∂μ̄

∂y
+ μ̄

∂2u′2

∂y2

)
(4.9)

which leads to the following non-dimensional form at the wall

V Dxx

τ̄ 2
w/μ

∣∣∣∣
w

=
∂2u′2/u2

τ

∂y+2

∣∣∣∣
w

. (4.10)

Hence, different curvature of the streamwise RMS velocity fluctuations explains why
viscous diffusion and dissipation close to a channel wall differ from the corresponding
values in the pipe. Figure 21 presents the two terms of (4.9), normalized with τ̄ 2

w/μ̄.
With this effect in mind the near-wall behaviour of the spanwise (circumferential)

RMS vorticity fluctuation in figure 15, which is controlled by ∂u′/∂y close to the wall,
makes sense and provides hints for improved low-Reynolds number modelling.

5. Analysis of pressure–strain correlation
We start from an equation for the pressure fluctuation, which is obtained by

taking the divergence of the momentum equation, introducing mass conservation and
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τ̄ 2
w/μ̄ and plotted versus y∗. Dotted/solid lines represent channel/pipe flow.

subtracting the corresponding mean equation, viz

∇2p′ = −∇ · ∇ ·
(
ρ�u ·�u − ρ�u ·�u

)
+

∂2ρ ′

∂t2
+ ∇ · ∇ · τ ′ (5.1)

The scalar ∇ · ∇· C, where C is either the fluctuating stress tensor τ ′ or a dyad, e.g.

ρ�u.�u reads in cylindrical coordinates:

∇ · ∇ · C =
1

r

(
∂2rCrr

∂r2
− ∂Cφφ

∂r
+ 2

∂2rCrx

∂r∂x
+ 2

∂2Cφx

∂φ∂x

)

+
1

r2

(
2
∂2rCrφ

∂r∂φ
+

∂2Cφφ

∂φ2

)
+

∂2Cxx

∂x2
. (5.2)

Instead of the second temporal derivative of the density fluctuation we use the Galilean
invariant second material derivative which reads for fully developed non-swirling pipe
flow:

D2ρ ′

Dt2
=

∂2ρ ′

∂t2
+ 2ũx

∂2ρ ′

∂x∂t
+ ũx

2 ∂2ρ ′

∂x2
,

=
∂2ρ ′

∂t2
− ũx

2 ∂2ρ ′

∂x2
− 2ũx

[
ρ̄

(
∂2u′′

r

∂x∂r
+

1

r

∂2u′′
φ

∂x∂φ
+

∂2u′′
x

∂x2

)
+

1

r

∂rρ̄

∂r

∂u′′
r

∂x

]

− 2ũx

(
∂2ρ ′u′′

x

∂x2
+

1

r

∂2rρ ′u′′
r

∂x∂r
+

1

r

∂2ρ ′u′′
φ

∂x∂φ

)
. (5.3)

In (5.1) we now split density and velocities into mean and fluctuating parts and obtain
two source terms AR and AS which define rapid and slow parts of the pressure, like
in incompressible flow, besides the terms B1, B2 involving first and second radial
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derivatives of mean density and terms C1–C3, containing density fluctuations:

∇2p′ = −2ρ̄
∂ũx

∂r

∂u′′
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∂x︸ ︷︷ ︸
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︸ ︷︷ ︸
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−D2ρ ′

Dt2︸ ︷︷ ︸
C3

+ ∇ · ∇ · τ ′︸ ︷︷ ︸
V

. (5.4)

The C3 term in (5.4), D2ρ ′/Dt2, leads to a convected, inhomogeneous wave equation
for the pressure fluctuation, in principle. Here we assume, as in Foysi et al. (2004)
for supersonic channel flow, that this term contributes little to p′ allowing (5.4) to be
interpreted as a Poisson equation for pressure fluctuations. We will, of course, validate
this assumption by comparison of the resulting analytical solution with DNS data.

The following Green-function-based analysis of the Poisson equation for p′ uses
the boundary condition

∂p′

∂r
=

4

3

(
μ̄

∂2u′
r

∂r2
+

∂μ̄

∂r

∂u′
r

∂r

)
at the pipe wall. We denote the right-hand side of (5.4) as ρ̄f ′ and perform a Fourier
transformation in the two homogeneous directions to obtain:

d2p̂

dr2
+

1

r

dp̂

dr
−

(
k2

x +
1

r2
k2

φ

)
p̂ = ρ̄f̂ . (5.5)

Note that the coordinate r and the wavenumbers have been normalized by R.
Multiplying (5.5) by r2 we get,

r2 d2p̂

dr2
+ r

dp̂

dr
−

(
r2k2

x + k2
φ

)
p̂ = r2ρ̄f̂ ≡ ρ̄f̂1. (5.6)

The homogeneous equation corresponding to (5.6) is the modified Bessel equation of
order kφ which has the general solution

p̂(r) = AIkφ
(kxr) + BKkφ

(kxr),
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where Ikφ
(kxr) and Kkφ

(kxr) are modified Bessel functions of first and second kind,
respectively. The constants A and B follow from the boundary conditions. Since, (5.6)
is linear, we use the superposition principle to get the final solution.

First, we seek a Green function G(kx, kφ, r, ro) which satisfies the following equation:

r2 d2G

dr2
+ r

dG

dr
−

(
r2k2

x + k2
φ

)
G = r2δ(r − ro), (5.7)

where ro is the position of the point source. Equation (5.7) satisfies the homogeneous
boundary condition B1 = 0 at r =1. Finiteness of G should be imposed at r = 0. Below
and above ro, (5.7) has the following solutions:

G<(kx, kφ, r, ro) = CIkφ
(kxr) + DKkφ

(kxr), 0 � r < ro,

G>(kx, kφ, r, ro) = AIkφ
(kxr) + BKkφ

(kxr), ro < r � 1,

G being finite at r = 0, leads to D = 0, since Kkφ
(kxr) goes to infinity at r = 0 for

some values of kφ . There remain three constants to be evaluated from the following
conditions:

(i) Boundary condition at r = 1,
(ii) Continuity of G close to r = ro, i.e. G< = G> ,
(iii) Jump condition on G close to r = ro, i.e.dG> /dr − dG< /dr = 1/r (Stakgold

1979).
After some algebra we get the following solution for G for kx =0, kφ = 0

G<(kx, kφ, r, ro) = −
Ikφ

(kxro)Ikφ
(kxr)K

′
kφ

(kx)

I
′
kφ

(kx)
+ Kkφ

(kxro)Ikφ
(kxr),

G>(kx, kφ, r, ro) = −
Ikφ

(kxro)Ikφ
(kxr)K

′
kφ

(kx)

I
′
kφ

(kx)
+ Ikφ

(kxro)Kkφ
(kxr). (5.8)

Here use is made of the Wroskian

Ikφ
(kxr)K

′

kφ
(kxr) − Kkφ

(kxr)I
′

kφ
(kxr) =

1

kxr
(5.9)

Solutions for the three cases kx = 0, kφ =0; kx =0, kφ = 0 and kx = 0, kφ =0 can be
derived easily and are not included here for brevity. The modified Bessel functions are
computed using GNU Scientific Library. Next, we solve the homogeneous equation
corresponding to (5.6) satisfying the inhomogeneous boundary condition

B1 = 4/3

(
μ̄

∂2ûr

∂r2
+

∂μ̄

∂r

∂ûr

∂r

)
at r = 1.

The solution of this equation after imposing the finiteness condition at r = 0 (as
discussed above) and the boundary condition at r = 1 is

p̂B =
B1Ikφ

(kxr)

kxI
′
kφ

(kx)
.

So, using superposition, the solution to (5.6) is

p̂(kx, kφ, r) =

1∫
0

G(kx, kφ, r, ro)ρ̄(ro)f̂ (kx, kφ, ro)rodro + p̂B(kx, kφ, r). (5.10)



178 S. Ghosh, H. Foysi and R. Friedrich

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1.0

 0.2  0.4  0.6  0.8 1.0

G
(k

x,
 k

φ
, 
0
.5

8
, 
r o

),
 G

(k
, 
0
.5

8
, 
y′

)

1–ro, y′–1

Figure 22. Green functions of pipe (solid line) and channel (dashed line) due to a point
source located at y = 0.58, r =0.58 for different sets of wavenumbers, normalized with their
respective maxima. kxl = 5, kzl =9 (lines); kxl = 5, kzl = 15 (lines with circles).

It is worthwhile to compare the Green function (5.8) with that for the channel flow
given below, as described by Kim (1989) and Foysi et al. (2004), for two different sets
of wavenumbers:

G<(k, y, y ′) = −cosh[k(y ′ − 1)]cosh[k(y + 1)]

2kcosh(k)sinh(k)
, y < y ′

G>(k, y, y ′) = −cosh[k(y ′ + 1)]cosh[k(y − 1)]

2kcosh(k)sinh(k)
, y > y ′,

where y ′ is the point source location (y, y ′ are normalized with channel half-width h

and have their origin at the channel centre line in the analysis and in figure 22) and
k =

√
k2

x + k2
z .

Figure 22 shows the profiles of G(kx, kφ, 0.58, ro) and G(k, 0.58, y ′) for a point
source location at y = 0.58, r =0.58. As to be expected, the different geometries of
pipe and channel flow lead to different decay rates of the Green function away from
the source location. The decay rates are faster at higher wavenumbers, indicating that
the high-wavenumber content of the source term has a more local effect, in contrast
to its low-wavenumber counterpart which affects the pressure fluctuation globally.

The inverse Fourier transform of (5.10) provides the pressure fluctuation in physical
space

p′(x, r, φ) =

1∫
0

ρ̄(ro)G ∗ f ′(x, r, φ, ro)rodro + p′
B(x, r, φ), (5.11)

where G ∗ f ′ represents the inverse Fourier transform of Gf̂ . From (5.11), the
components of the pressure–strain correlation tensor are obtained, e.g.

PSxx = p′ ∂u′

∂x
=

1∫
0

ρ̄(ro)G ∗ f ′(x, r, φ, ro)
∂u′

∂x
rodro + p′

B

∂u′

∂x
. (5.12)

This result underlines the non-local effect of ρ̄ on the pressure–strain correlation.
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(solid line) and channel flow (dashed line).

In (5.12), the quantity G ∗ f ′(x, r, φ, ro)∂u′/∂x is obtained numerically by Reynolds
averaging the instantaneous values of G ∗ f ′∂u′/∂x. It was shown by Foysi et al.
(2004) for channel flows, that the terms containing mean density and its wall-normal
gradient on the right-hand side of the Poisson equation for p′ are the most significant
source terms which contribute to PSxx . Because (5.4) (after neglecting the C3 term)
is linear, we first test the contributions of the rapid and the slow terms, AR and
AS , to PSxx . The result is shown in figure 23 and indicates that the nonlinear or
slow term, AS , dominates over the rapid term in both flows. AR , on the other hand,
reflects the competing effects of the mean velocity gradient close to the wall and
of the radial (wall-normal) velocity fluctuation’s streamwise gradient away from the
wall which explains the double peak behaviour in both flows. The sum of AR and
AS forms the main contribution to PSxx which is obvious from figure 24, where the
combined contribution of AR , AS , B1 and B2, evaluated using (5.11), is compared to
DNS data for pipe (solid curve) and channel flow (dashed curve). Firstly, we note
that the overall agreement between the analytical solution (5.12) for the pipe (and an
analogous solution for the channel) and the present DNS data is very good, confirming
that a variable-density extension of the Poisson equation for p′ is sufficient to obtain
the pressure–strain term in supersonic pipe and channel flow. The differences between
the solutions for the pipe and channel flow is due to the different mean densities in
the two flows as well as to the curvature effect on the source terms and Green function
in the pipe flow.

6. Conclusions
Comparison of fully developed turbulent compressible channel and pipe flow

at equal friction Reynolds number of 245 and friction Mach number of 0.077
(corresponding to supersonic global Mach numbers) based on DNS data reveals
more differences than similarities.

The key to the understanding of these differences on a statistical level, which ignores
the existence of coherent structures, is transverse curvature which gradually loses
importance as the radius of curvature R or equivalently the friction Reynolds number
Reτ increases. Transverse curvature explicitly affects the wall-normal mean pressure
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Figure 24. Combined contribution of AR , AS , B1 and B2 to PSxx in pipe and channel flow.
Lines with dots are the Green function solutions and the solid and dashed lines are PSxx from
DNS for pipe and channel flow, respectively.

distribution (defined in (3.9)) and the mean temperature and density distributions
(defined in (3.14)). Although the wall-normal Reynolds stress is already affected by
the mean pressure (defined in (3.8) and (3.9)), there is a further mechanism which
contributes to differences in Reynolds normal stresses in the channel and the pipe away
from the wall, namely turbulent energy redistribution. Transport equations for the
normal Reynolds stresses contain pressure–strain correlations which are consistently
lower in the channel than in the pipe core, and this is the main reason why the normal
stresses in the channel are lower than in the pipe.

The explanation for the observed differences in pressure–strain correlations is
provided through a simplified solution for the pressure fluctuations using Green’s
functions and neglecting wave-propagation effects, which contribute to the pressure
fluctuations in the core regions alone, but not to the pressure–strain correlations.
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framework of the project Fr478/24-1 and H. F. acknowledges support through the
Emmy Noether Programme.
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